Recruitment of Cln3 Cyclin to Promoters Controls Cell Cycle Entry via Histone Deacetylase and Other Targets
نویسندگان
چکیده
In yeast, the G1 cyclin Cln3 promotes cell cycle entry by activating the transcription factor SBF. In mammals, there is a parallel system for cell cycle entry in which cyclin dependent kinase (CDK) activates transcription factor E2F/Dp. Here we show that Cln3 regulates SBF by at least two different pathways, one involving the repressive protein Whi5, and the second involving Stb1. The Rpd3 histone deacetylase complex is also involved. Cln3 binds to SBF at the CLN2 promoter, and removes previously bound Whi5 and histone deacetylase. Adding extra copies of the SBF binding site to the cell delays Start, possibly by titrating Cln3. Since Rpd3 is the yeast ortholog of mammalian HDAC1, there is now a virtually complete analogy between the proteins regulating cell cycle entry in yeast (SBF, Cln3, Whi5 and Stb1, Rpd3) and mammals (E2F, Cyclin D, Rb, HDAC1). The cell may titrate Cln3 molecules against the number of SBF binding sites, and this could be the underlying basis of the size-control mechanism for Start.
منابع مشابه
Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae.
In budding yeast cells, nutrient repletion induces rapid exit from quiescence and entry into a round of growth and division. The G1 cyclin CLN3 is one of the earliest genes activated in response to nutrient repletion. Subsequent to its activation, hundreds of cell-cycle genes can then be expressed, including the cyclins CLN1/2 and CLB5/6. Although much is known regarding how CLN3 functions to a...
متن کاملThe E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters.
Regulation of the CLN1 and CLN2 G1 cyclin genes controls cell cycle progression. The SBF activator binds to these promoters but is kept inactive by the Whi5 and Stb1 inhibitors. The Cdc28 cyclin-dependent kinase phosphorylates Whi5, ending the inhibition. Our chromatin immunoprecipitation (ChIP) experiments show that SBF, Whi5 and Stb1 recruit both Cdc28 and the Rpd3(L) histone deacetylase to C...
متن کاملDual Regulation by Pairs of Cyclin-Dependent Protein Kinases and Histone Deacetylases Controls G1 Transcription in Budding Yeast
START-dependent transcription in Saccharomyces cerevisiae is regulated by two transcription factors SBF and MBF, whose activity is controlled by the binding of the repressor Whi5. Phosphorylation and removal of Whi5 by the cyclin-dependent kinase (CDK) Cln3-Cdc28 alleviates the Whi5-dependent repression on SBF and MBF, initiating entry into a new cell cycle. This Whi5-SBF/MBF transcriptional ci...
متن کاملHistone deacetylase 3 regulates cyclin A stability.
PCAF and GCN5 acetylate cyclin A at specific lysine residues targeting it for degradation at mitosis. We report here that histone deacetylase 3 (HDAC3) directly interacts with and deacetylates cyclin A. HDAC3 interacts with a domain included in the first 171 aa of cyclin A, a region involved in the regulation of its stability. In cells, overexpression of HDAC3 reduced cyclin A acetylation where...
متن کاملComparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins.
In the budding yeast Saccharomyces cerevisiae, the G1 cyclins Cln1, Cln2 and Cln3 regulate entry into the cell cycle (Start) by activating the Cdc28 protein kinase. We find that Cln3 is a much rarer protein than Cln1 or Cln2 and has a much weaker associated histone H1 kinase activity. Unlike Cln1 and Cln2, Cln3 is not significantly cell cycle regulated, nor is it down-regulated by mating pherom...
متن کامل